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Overview 

In this note we introduce the properties of variance swaps, and give details on the hedging and 
valuation of these instruments. 

 

Section 1 gives quick facts about variance swaps and their applications. 

 

Section 2 is written for traders and market professionals who have some degree of 
familiarity with the theory of vanilla option pricing and hedging, and explains in ‘intuitive’ 
mathematical terms how variance swaps are hedged and priced. 

 

Section 3 is written for quantitative traders, researchers and financial engineers, and gives 
theoretical insights into hedging strategies, impact of dividends and jumps. 

 

Appendix A is a review of the concepts of historical and implied volatility. 

 

Appendices B and C cover technical results used in the note. 

 

 

We thank Cyril Levy-Marchal, Jeremy Weiller, Manos Venardos, Peter Allen, Simone Russo for 
their help or comments in the preparation of this note. 
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1. Variance Swaps 
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1.1. Payoff 
A variance swap is an instrument which allows investors to trade future realized (or historical) 
volatility against current implied volatility.  As explained later in this document, only variance 
—the squared volatility— can be replicated with a static hedge. [See Sections 2.2 and 3.2 for 
more details.] 

Sample terms are given in Exhibit 1.1.1 below. 

Exhibit 1.1.1 —  Variance Swap on S&P 500 : sample terms and conditions 
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VARIANCE SWAP ON S&P500 
 

SPX INDICATIVE TERMS AND CONDITIONS 
 
 
Instrument: Swap 
 
Trade Date: TBD 
 
Observation Start Date: TBD 
 
Observation End Date: TBD 
 
Variance Buyer: TBD (e.g. JPMorganChase) 
 
Variance Seller: TBD (e.g. Investor) 
 
Denominated Currency: USD (“USD”) 
 
Vega Amount: 100,000  
 
Variance Amount: 3,125 ( determined as Vega Amount/(Strike*2) ) 
 
Underlying: S&P500 (Bloomberg Ticker: SPX Index) 
 
Strike Price: 16  
 
Currency: USD 
 
Equity Amount: T+3 after the Observation End Date, the Equity Amount will be calculated and paid in 

accordance with the following formula: 
 

Final Equity payment = Variance Amount * (Final Realized Volatility2 – Strike 
Price2) 
 
If the Equity Amount is positive the Variance Seller will pay the Variance Buyer the 
Equity Amount. 
If the Equity Amount is negative the Variance Buyer will pay the Variance Seller an 
amount equal to the absolute value of the Equity Amount. 

 
 where  

 Final Realised Volatility = 100
N_Expected

252
Nt

1t

2

1t

t

P
Pln

×

×∑ 






=

=
−

 

 
Expected_N = [number of days], being the number of days which, as of the Trade Date, are 

expected to be Scheduled Trading Days in the Observation Period  
P0 = The Official Closing of the underlying at the Observation Start Date  
Pt  = Either the Official Closing of the underlying in any observation date t or, at 

Observation End Date, the Official Settlement Price of the Exchange-Traded 
Contract  

  
 
Calculation Agent: JP Morgan Securities Ltd. 
Documentation: ISDA  
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Note: 

Returns are computed on a logarithmic basis: 








−1t

t

P
Pln . 

 

 

The mean return, which normally appears in statistics textbooks, is dropped.  This is 
because its impact on the price is negligible (the expected average daily return is 1/252nd 
of the money-market rate), while its omission has the benefit of making the payoff 
perfectly additive (3-month variance + 9-month variance in 3 months = 1-year variance.) 

It is a market practice to define the variance notional in volatility terms:  

 
Strike
NotionalVegaNotionalVariance

×
=

2
 

With this adjustment, if the realized volatility is 1 ‘vega’ (volatility point) above the strike 
at maturity, the payoff is approximately equal to the Vega Notional.  

 

Convexity 

The payoff of a variance swap is convex in volatility, as illustrated in  Exhibit 1.1.2.  This 
means that an investor who is long a variance swap (i.e. receiving realized variance and paying 
strike at maturity) will benefit from boosted gains and discounted losses.  This bias has a cost 
reflected in a slightly higher strike than the ‘fair’ volatility2, a phenomenon which is amplified 
when volatility skew is steep.  Thus, the fair strike of a variance swap is often in line with the 
implied volatility of the 90% put.   

 

Exhibit 1.1.2 —  Variance swaps are convex in volatility 
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2 Readers with a mathematical background will recall Jensen’s inequality:  )()( VarianceEVarianceE ≤ . 



Rules of thumb 
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Demeterfi—Derman—Kamal—Zou (1999) derived a rule of thumb for the fair strike of a 
variance swap when the skew is linear in strike: 

 2
var 31 skewTK ATMF ×+≈ σ  

where ATMFσ  is the at-the-money-forward volatility, T is the maturity, and skew is the slope 

of the skew curve.  For example, with ATMFσ  = 20%, T = 2 years, and a 90-100 skew of 2 
vegas, we have Kvar ≈ 22.3%, which is in line with the 90% put implied volatility normally 
observed in practice.   

For log-linear skew, similar techniques give the rule of thumb: 

 ( )242
2

32
var 512

4
TTTK ATMFATMFATMFATMF σσββσσ +++≈  

where ATMFσ  is the at-the-money-forward volatility, T is the maturity, and β is the slope of 

the log skew curve3.  For example, with ATMFσ  = 20%, T = 2 years, and a 90-100 skew of 2 

vegas, we have 19.0
)9.0ln(

%2
≈−=β  and Kvar ≈ 22.8%. 

Note that these two rules of thumb produce good results only for non-steep skew. 

 

1.2. Applications 

Volatility Trading 

Variance swaps are natural instruments for investors taking directional bets on volatility:  

 

 

 

 

                                                

Realized volatility: unlike the trading P&L of a delta-hedged option position, a long 
variance position will always benefit when realized volatility is higher than implied at 
inception, and conversely for a short position [see Section 2.1 on P&L path-dependency.] 

Implied volatility: similar to options, variance swaps are fully sensitive at inception to 
changes in implied volatility 

 

Variance swaps are especially attractive to volatility sellers for the following two reasons: 

Implied volatility tends to be higher than final realized volatility: ‘the derivative house has 
the statistical edge.’ 

Convexity causes the strike to be around the 90% put implied volatility, which is slightly 
higher than ‘fair’ volatility. 

 

Forward volatility trading 

Because variance is additive, one can obtain a perfect exposure to forward implied volatility 
with a calendar spread.  For example, a short 2-year vega exposure of €100,000 on the 
EuroStoxx 50 starting in 1 year can be hedged as follows [levels as of 21 April, 2005]: 
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3 The skew curve is thus assumed to be of the form:  where F is the forward price. )/ln()( FKK ATMF βσσ −=
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 Long 2-year variance struck at 19.50 on a Vega Notional of €200,000 (i.e. a Variance 
Notional of 5,128) 

Short 1-year variance struck at 18.50 on a Variance Notional of 5,128 / 2 = 2,564 (i.e. a 
Vega Notional of €94,868) 

Implied forward volatility on this trade is approximately4: 

 { { 5.20118.50-219.50
tenorvolyear1tenorvolyear2

=××
−−
321321 .   

Therefore, if the 1-year implied volatility is above 20.5 in one year’s time, say at 21, the 
hedge will be approximately up ½ a vega, or €50,000, while the exposure will be down by the 
same amount. 

However, keep in mind that the fair value of a variance swap is also sensitive to skew. 

 

Forward volatility trades are interesting because the forward volatility term structure tends to 
flatten for longer forward-start dates, as illustrated in Exhibit 1.2.1 below.  In this example, 
we can see that the 1-year forward volatilities exhibit a downard sloping term structure.  
Thus, an investor who believes that the term structure will revert to an upward sloping shape 
might want to sell the 12x1 and buy the 12x12 implied volatilities, or equivalently sell 13m 
and buy 24m, with appropriate notionals: 

 Buy 12x12 =  Buy 24m and Sell 12m 
 Sell 12x1 = Sell 13m and Buy 12m   
 Buy spread  = Buy 24m and Sell 13m 

 

Exhibit 1.2.1 —  Spot and forward volatility curves derived from fair variance swap strikes 

 

13
14
15
16
17
18
19
20
21
22
23
24

1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 11m 12m

Spot 3m fwd 6m fwd 12m fwd

 
Source: JPMorgan. 

 

Spreads on indices 

Variance swaps can also be used to capture the volatility spread between two correlated 
indices, for instance by being long 3-month DAX variance and short 3-month EuroStoxx 50 
variance.  Exhibit 1.2.2 below shows that in the period 2000-2004 the historical spread was 
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4 An accurate calculation would be: 
)2(
)1(121222

yPV
yPVvolyvoly ××−× , where PV(t) is the present value of €1 paid at time 

 

bossus
Rectangle



almost always in favor of the DAX and sometimes as high as 12 vegas, while the implied 
spread5 ranged between -4 and +4 vegas. 
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Exhibit 1.2.2 —  Volatility spread between DAX and EuroStoxx 50: historical (a) and implied (b) 

 
a) 

 

 
b) 

 
Source: JPMorgan—DataQuery. 

 

Correlation trading: Dispersion trades 

A popular trade in the variance swap universe is to sell correlation by taking a short position 
on index variance and a long position on the variance of the components.  Exhibit 1.2.3 below 
shows the evolution of one-year implied and realized correlation. 
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5 Measured as the difference between the 90% strike implied volatilities. Actual numbers may differ depending on 

skew, transaction costs and other market conditions. 



Exhibit 1.2.3 —  Implied and realized correlation of EuroStoxx 50 
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Source: JPMorgan—DataQuery. 

 

More formally the payoff of a variance dispersion trade is: 

   StrikeResidualNotionalNotionalw IndexIndex

n

1i
iii −−∑

=

22 σσ

where w’s are the weights of the index components, σ’s are realized volatilities, and notionals 
are expressed in variance terms.  Typically, only the most liquid stocks are selected among the 
index components, and each variance notional is adjusted to match the same vega notional as 
the index in order to make the trade vega-neutral at inception. 

 

1.3. Mark-to-market and Sensitivities 

Mark-to-market 

Because variance is additive in time dimension the mark-to-market of a variance swap can be 
decomposed at any point in time between realized and implied variance: 

 

( )

( ) 
−

−
+


 ×××=

22

2

),(VolImplied

),0(VolRealized)(Notional

StrikeTt
T

tT

t
T
tTPVVarSwap tt
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where Notional is in variance terms, PVt(T) is the present value at time t of $1 received at 
maturity T, Realized Vol(0, t) is the realized volatility between inception and time t, Implied 
Vol(t, T) is the fair strike of a variance swap of maturity T issued at time t. 

For example, consider a one-year variance swap issued 3 months ago on a vega notional of 
$200,000, struck at 20.  The 9-month zero-rate is 2%, realized volatility over the past 3 months 



was 15, and a 9-month variance swap would strike today at 19.  The mark-to-market of the 
one-year variance swap would be: 
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619,359$

2019
4
315

4
1

%)21(
1

202
000,200 222

75.0

−=





 −×+××

+
×

×
=tVarSwap

 

Note that this is not too far from the 2 vega loss which one obtains by computing the weighted 
average of realized and implied volatility: 0.25 x 15 + 0.75 x 19 = 18, minus 20 strike. 

 

Vega sensitivity 

The sensitivity of a variance swap to implied volatility decreases linearly with time as a direct 
consequence of mark-to-market additivity: 

 
T

tTNotional
VarSwap

Vega implied
implied

t −
××=

∂
∂

= )2( σ
σ

 

Note that Vega is equal to 1 at inception if the strike is fair and the notional is vega-adjusted: 

 
Strike
NotionalVegaNotional

×
=

2
 

 

Skew sensitivity 

As mentioned earlier the fair value of a variance swap is sensitive to skew: the steeper the 
skew the higher the fair value. Unfortunately there is no straightforward formula to measure 
skew sensitivity but we can have a rough idea using the rule of thumb for linear skew in 
Section 1.1: 

 ( )222
var 31 skewTK ATMF ×+≈ σ  

 skew
T

tTNotionalySensitivitSkew ATMF ×
−

×××≈ 26 σ  

For example, consider a one-year variance swap on a vega notional of $200,000, struck at 15.   
At-the-money-forward volatility is 14, and the 90-100 skew is 2.5 vegas.  According to the rule 
of thumb, the fair strike is approximately 14 x (1 + 3 x (2.5/10)2) = 16.62.  If the 90-100 skew 
steepens to 3 vegas the change in mark-to-market would be: 

 000,100$
10

5.23
10

5.214
152
000,2006 2 ≈






 −

×××
×

×≈∆

∆
434214444 34444 21

SkewySensitivit

MTM  

 

Dividend sensitivity 

Dividend payments affect the price of a stock, resulting in a higher variance.  When dividends 
are paid at regular intervals, it can be shown that ex-dividend annualized variance should be 
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adjusted by approximately adding the square of the annualized dividend yield divided by the 
number of dividend payments per year6. The fair strike is thus: 
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YearPerDivsNb

YieldDivKK divex
2

2
varvar

)()( +≈ −  

From this adjustment we can derive a rule of thumb for dividend sensitivity: 

 
T

tT
K

YearPerDivsNbYieldDivNotional
YieldDiv

VarSwapt −
××≈

∂
∂

=
var

µ  

For example, consider a one-year variance swap on a vega notional of $200,000 struck at 20.  
The fair strike ex-dividend is 20 and the annual dividend yield is 5%, paid semi-annually.  The 
adjusted strike is thus (202 + 52 / 2)0.5 = 20.31. Were the dividend yield to increase to 5.5% the 
change in mark-to-market would be: 

 ( ) 310,12$55.5
31.20
2/5000,200 ≈−××≈∆

∆
43421

44 344 21 YieldDiv
ysensitivitskew

MTM  

However, in the presence of skew, changes in dividend expectations will also impact the 
forward price of the underlying which in turns affects the fair value of varianc.  This 
phenomenon will normally augment the overall dividend sensitivity of a variance swap. 
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6 More specifically the adjustment is M
T

D
M
Τ

dT

M

j
j ×=






 ×∑

=

2
2

1

1
 where d1, d2, …, dM are gross dividend yields and D is 

the annualized ‘average’ dividend yield.  See Section 3.3 for more details. 
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2. Valuation and Hedging in Practice 

2.1. Vanilla Options: Delta-Hedging and P&L Path-Dependency 

Delta-Hedging 

Option markets are essentially driven by expectations of future volatility.  This results from 
the way an option payoff can be dynamically replicated by only trading the underlying stock 
and cash, as described in 1973 by Black—Scholes and Merton. 

More specifically, the sensitivity of an option price to changes in the stock price, or delta, can 
be entirely offset by continuously holding a reverse position in the underlying in quantity equal 
to the delta.  For example, a long call position on the S&P 500 index with an initial delta of 
$5,000 per index point (worth $6,000,000 for an index level of 1,200) is delta-neutralized by 
selling 5,000 units of the S&P 500 (in practice 20 futures contracts: 6,000,000/(250 x 1,200))  
Were the delta to increase to $5,250 per index point, the hedge should be adjusted by selling 
an additional 250 units (1 contract), and so forth.  The iteration of this strategy until maturity 
is known as delta-hedging. 

 

Once the delta is hedged, an option trader is mostly left with three sensitivities: 

Gamma: sensitivity of the option delta to changes in the underlying stock price ; 

Theta or time decay: sensitivity of the option price to the passage of time ; 

Vega: sensitivity of the option price to changes in the market’s expectation of future 
volatility (i.e. implied volatility.)7 

The daily P&L on a delta-neutral option position can be decomposed along these three factors: 

 Daily P&L = Gamma P&L + Theta P&L + Vega P&L + Other (Eq. 1) 

Here ‘Other’ includes the P&L from financing the reverse delta position on the underlying, as 
well as the P&L due to changes in interest rates, dividend expectations, and high-order 
sensitivities (e.g. sensitivity of Vega to changes in stock price, etc.) 

Equation 1 can be rewritten: 

 Daily P&L = ...)()()
2
1 2 +∆×+∆×Θ∆ σVtS( +×Γ  

where ∆S is the change in the underlying stock price, ∆t is the fraction of time elapsed 
(typically 1/365), and ∆σ is the change in implied volatility. 

We now consider a world where implied volatility is constant, the riskless interest rate is zero, 
and other P&L factors are negligible.  In this world resembling Black-Scholes, we have the 
reduced P&L equation: 

 Daily P&L = )()
2
1 2 tS ∆×Θ∆( +×Γ  (Eq. 2) 

We proceed to interpret Equation 2 in terms of volatility, and we will see that in this world 
the daily P&L of a delta-hedged option position is essentially driven by realized and implied 
volatility. 
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7 Note that in Black-Scholes volatility is assumed to remain constant through time.  The concept of Vega is thus 

inconsistent with the theory, yet critical in practice. 



We start with the well-known relationship between theta and gamma: 

A
T

 
Y

O
U

 
N

E
E

D
 

T
O

 
K

N
O

W
 

A
B

O
U

T
 

V
A

R
I

A
N

C
E

 
S

W
A

P
S

 

 22

2
1 σSΓ−≈Θ  (Eq. 3) 

where S is the current spot price of the underlying stock and σ the current implied volatility of 
the option. 

In our world with zero interest rate, this relationship is actually exact, not approximate.  
Appendix B presents two derivations of Equation 3, one based on intuition and one which is 
more rigorous. 

Equation 3 is the core of Black-Scholes: it dictates how option prices diffuse in time in relation 
to convexity.  Plugging Equation 3 into Equation 2 and factoring S2, we obtain a 
characterization of the daily P&L in terms of squared return and squared implied volatility: 

 Daily P&L = 









∆






 ∆ t

S
SS 2

2

2
1 σ −×Γ 2  (Eq. 4) 

The first term in the bracket, S
S∆ , is the percent change in the stock price — in other words, 

the one-day stock return.  Squared, it can be interpreted as the realized one-day variance.  

The second term in the bracket, , is the squared daily implied volatility, which one 
could name the daily implied variance. 

t∆2σ

Thus, Equation 4 tells us that the daily P&L of a delta-hedged option position is driven by the 
spread between realized and implied variance, and breaks even when the stock price 
movement exactly matches the market’s expectation of volatility. 

In the following paragraph we extend this analysis to the entire lifetime of the option. 

 

P&L path-dependency 

One can already see the connection between Equation 4 and variance swaps: if we sum all 
daily P&L’s until the option’s maturity, we obtain an expression for the final P&L: 

 Final P&L = [ ]∑
=

∆−
n

t
tt tr

0

22

2
1 σγ  (Eq. 5) 

where the subscript t denotes time dependence, rt the stock daily return at time t, and gt the 
option’s gamma multiplied by the square of the stock price at time t, also known as dollar 
gamma. 

Equation 5 is very close to the payoff of a variance swap: it is a weighted sum of squared 
realized returns minus a constant that has the role of the strike.  The main difference is that 
in a variance swap weights are constant, whereas here the weights depend on the option 
gamma through time, a phenomenon which is known to option traders as the path-dependency 
of an option’s trading P&L, illustrated in Exhibit 2.1.1. 

It is interesting to note that even when the stock returns are assumed to follow a random walk 
with a volatility equal to σ, Equation 5 does not become nil.  This is because each squared 

return remains distributed around  rather than equal to .  However this particular t∆2σ t∆2σ
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path-dependency effect is mostly due to discrete hedging rather than a discrepancy between 
implied and realized volatility and will vanish in the case of continuous hedging8.  
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Exhibit 2.1.1 —  Path-dependency of an option’s trading P&L 
In this example an option trader sold a 1-year call struck at 110% of the initial price on a notional of $10,000,000 for 
an implied volatility of 30%, and delta-heged his position daily.  The realized volatility was 27.50%, yet his final 
trading P&L is down $150k.  Furthermore, we can see (Figure a) that the P&L was up $250k until a month before 
expiry: how did the profits change into losses?  One indication is that the stock price oscillated around the strike in 
the final months (Figure a), triggering the dollar gamma to soar (Figure b.)  This would be good news if the volatility 
of the underlying remained below 30% but unfortunately this period coincided with a change in the volatility regime 
from 20% to 40% (Figure b.)  Because the daily P&L of an option position is weighted by the gamma and the volatility 
spread between implied and realized was negative, the final P&L drowned, even though the realized volatility over 
the year was below 30%! 
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8 See Wilmott (1998) for a theoretical approach of discrete hedging and Allen—Harris (2001) for a statistical analysis of 
this phenomenon.  Wilmott notes that the daily Gamma P&L has a chi-square distribution, while Allen—Harris 
include a bell-shaped chart of the distribution of 1000 final P&Ls of a discretely delta-hedged option position.  
Neglecting the gamma dependence, the central-limit theorem indeed shows that the sum of n independent chi-
square variables converges to a normal distribution. 



2.2. Static Replication of Variance Swaps 
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In the previous paragraph we saw that a vanilla option trader following a delta-hedging 
strategy is essentially replicating the payoff of a weighted variance swap where the daily 
squared returns are weighted by the option’s dollar gamma9.  We now proceed to derive a 
static hedge for standard (‘non-gamma-weighted’) variance swaps.  The core idea here is to 
combine several options together in order to obtain a constant aggregate gamma. 

Exhibit 2.2.1 shows the dollar gamma of options with various strikes in function of the 
underlying level.  We can see that the contribution of low-strike options to the aggregate 
gamma is small compared to high-strike options.  Therefore, a natural idea is to increase the 
weights of low-strike options and decrease the weights of high-strike options. 

Exhibit 2.2.1 —  Dollar gamma of options with strikes 25 to 200 spaced 25 apart 

K = 25
K = 50

K = 75
K = 100

K = 125
K = 150

K = 175
K = 200

0 25 50 75 100 125 150 175 200 225 250 275 300

Underlying Level (ATM = 100)

Dollar Gamma
Aggregate

 
 

An initial, ‘naïve’ approach to this weighting problem is to determine individual weights w(K) 
such that each option of strike K has a peak dollar gamma of, say, 100.  Using the Black-
Scholes closed-form formula for gamma, one would find that the weights should be inversely 
proportional to the strike (i.e. w(K) = c / K, where c is a constant.)  [See Appendix C for 
details.] 

Exhibit 2.2.2 shows the dollar gamma resulting from this weighting scheme.  We can see that 
the aggregate gamma is still non-constant (whence the adjective ‘naïve’ to describe this 
approach), however we also notice the existence of a linear region when the underlying level 
is in the range 75—135. 
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9 Recall that dollar gamma is defined as the second-order sensitivity of an option price to a percent change in the 

underlying.  In this paragraph, we use the terms ‘gamma’ and ‘dollar gamma’ interchangeably. 



Exhibit 2.2.2 —  Dollar gamma of options weighted inversely proportional to the strike 
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This observation is crucial: if we can regionally obtain a linear aggregate gamma with a certain 
weighting scheme w(K), then the modified weights w’(K) = w(K) / K will produce a constant 
aggregate gamma.  Since the naïve weights are inversely proportional to the strike K, the 
correct weights should be chosen to be inversely proportional to the squared strike, i.e.: 

 2)(
K
cKw =  

where c is a constant. 

Exhibit 2.2.3 shows the results of this approach for the individual and aggregate dollar 
gammas.  As expected, we obtain a constant region when the underlying level stays in the 
range 75—135. 

A perfect hedge with a constant aggregate gamma for all underlying levels would take 
infinitely many options struck along a continuum between 0 and infinity and weighted 
inversely proportional to the squared strike.  This is etablished rigorously in Section 3.2.  Note 
that this is a strong result, as the static hedge is both space (underlying level) and time 
independent. 
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Exhibit 2.2.3 —  Dollar gamma of options weighted inversely proportional to the square of strike 

A
T

 
Y

O
U

 
N

E
E

D
 

T
O

 
K

N
O

W
 

A
B

O
U

T
 

V
A

R
I

A
N

C
E

 
S

W
A

P
S

 

K
 =

 2
5

K 
= 

50

K = 100

K 
= 

12
5

K 
= 

15
0

K 
= 

17
5

K 
= 

20
0

Aggregate

0 25 50 75 100 125 150 175 200 225 250 275 300

Underlying Level (ATM = 100)

Dollar Gamma

Constant Gamma Region

 

Interpretation 

One might wonder what it means to create a derivative whose dollar gamma is constant.  
Dollar gamma is the standard gamma times S2: 

 2
2

2
$ )( S

S
fS ×

∂
∂

=Γ  

where f, S are the prices of the derivative and underlying, respectively. Thus, a constant 
dollar gamma means that for some constant a: 

 22

2

S
a

S
f
=

∂
∂

 

The solution to this second-order differential equation is: 

 cbSSaSf ++−= )ln()(  

where a, b, c are constants, and ln(.) the natural logarithm.  In other words, the perfect static 
hedge for a variance swap would be a combination of the log-asset (a derivative which pays 
off the log-price of the underlying stock), the underlying stock and cash. 

 

2.3. Valuation 
Because a variance swap can be statically replicated with a portfolio of vanilla options, no 
particular modeling assumption is needed to determine its fair market value.  The only model 
choice resides in the computation of the vanilla option prices — a task which merely requires a 
reasonable model of the implied volatility surface. 
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Ncalls out-of-the-money calls respectively, a quick proxy for the fair value of a variance swap of 
maturity T is given as: 
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where VarSwap0 is the fair present value of the variance swap for a variance notional of 1, KVS 

is the strike, PV0(T) is the present value of $1 at time T,  and  are the respective 

strikes of the i-th put and i-th call in percentage of the underlying forward price, with the 
convention k

put
ik call

ik

0 = 0. 

In the typical case where the strikes are chosen to be spaced equally apart, say every 5% 
steps, the expression between brackets is the sum of the put and call prices, weighted by the 
inverse of the squared strike, times the 5% step.  Exhibit 2.3.1 below illustrates this 
calculation; in this example, the fair strike is around 16.62%, when a more accurate algorithm 
gave 16.54%.  We also see that the fair strike is close to the 90% implied volatility (17.3%), as 
mentioned in Section 1.1. 

 

Exhibit 2.3.1 —  Calculation of the fair value of a variance swap through a replicating portfolio of 
puts and calls 

In this example, the total hedge cost of the replicating portfolio is 2.7014% (=2/T * Σi(wipi)), or 270.14 variance points. 
For a variance notional of 10,000, this means that the floating leg of the variance swap is worth  €2,701,397.53.  For a 
strike of 16.625 volatility points, and a 1-year present value factor of 0.977368853, the fixed leg is worth €2,701,355.88. 
Thus, the variance swap has a value close to 0. 
 

Weight =  
      5%       
Strike%2 

Under- 
lying 

Call 
/ Put 

Forward Strike Strike 
(%Forward) 

Maturity Implied 
Volatility 

Price 
(%Notional) 

20.00% SX5E P 2,935.02 1,467.51 50% 1Y 27.6% 0.04% 

16.53% SX5E P 2,935.02 1,614.26 55% 1Y 26.4% 0.08% 

13.89% SX5E P 2,935.02 1,761.01 60% 1Y 25.2% 0.15% 

11.83% SX5E P 2,935.02 1,907.76 65% 1Y 24.0% 0.27% 

10.20% SX5E P 2,935.02 2,054.51 70% 1Y 22.7% 0.46% 

8.89% SX5E P 2,935.02 2,201.26 75% 1Y 21.4% 0.75% 

7.81% SX5E P 2,935.02 2,348.01 80% 1Y 20.0% 1.17% 

6.92% SX5E P 2,935.02 2,494.76 85% 1Y 18.7% 1.79% 

6.17% SX5E P 2,935.02 2,641.51 90% 1Y 17.3% 2.67% 

5.54% SX5E P 2,935.02 2,788.26 95% 1Y 16.0% 3.94% 

2.50% SX5E P 2,935.02 2,935.02 100% 1Y 14.8% 5.74% 

2.50% SX5E C 2,935.02 2,935.02 100% 1Y 14.8% 5.74% 

4.54% SX5E C 2,935.02 3,081.77 105% 1Y 13.7% 3.37% 

4.13% SX5E C 2,935.02 3,228.52 110% 1Y 12.9% 1.76% 

3.78% SX5E C 2,935.02 3,375.27 115% 1Y 12.2% 0.81% 

3.47% SX5E C 2,935.02 3,522.02 120% 1Y 11.9% 0.35% 

3.20% SX5E C 2,935.02 3,668.77 125% 1Y 11.8% 0.15% 

2.96% SX5E C 2,935.02 3,815.52 130% 1Y 11.9% 0.06% 

2.74% SX5E C 2,935.02 3,962.27 135% 1Y 12.1% 0.03% 

2.55% SX5E C 2,935.02 4,109.02 140% 1Y 12.5% 0.02% 

2.38% SX5E C 2,935.02 4,255.77 145% 1Y 12.9% 0.01% 

2.22% SX5E C 2,935.02 4,402.52 150% 1Y 13.4% 0.01% 
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Source: JPMorgan. 

 



3. Theoretical Insights 
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3.1. Idealized Definition of Variance 
An idealized definition of annualized realized variance W0,T is given by: 

 [ ]T,T SS
T

W ln,ln1
0 =  

where S denotes the price process of the underlying asset and [ln S, ln S] denotes the 
quadratic variation of ln S.  This definition is idealized in the sense that we implicitly assume 
that it is possible to monitor realized variance on a continuous basis.  It can be shown that the 
discrete definition of realized variance given in Section 1.1 converges to the idealized 
definition above when moving to continuous monitoring. 

This definition applies in particular to the classic Ito process for stock prices: 

 ttt
t

t dWStdtSt
S

dS
),,(),,( KK σµ +=  

where the drift µ and the volatility σ are either deterministic or stochastic.  In this case, the 
idealized definition of variance becomes: 

 ∫=
T

t,T dtSt
T

W
0

2
0 ),,(1

Kσ . 

However, in the presence of jumps, the integral above only represents the continuous 

contribution to total variance, often denoted [ ]cTSS ln,ln .  More details on the impact of 
jumps can be found in Section 3.4. 

3.2. Hedging Strategies & Pricing 
For ease of exposure, we assume in this section that dividends are zero and that the 
underlying price process S is a diffusion process. Moreover, let us assume that rates are 
deterministic. Let us introduce some notation: By S, we denote the non-discounted spot price 

process and by B
S=Ŝ  we denote the discounted spot price process, where B refers to the 

deterministic money market account. It is important to note that [ ] [ ]SSSS ˆln,ˆlnln,ln =  

when rates are deterministic. Moreover, the continuity of together with Ito's formula yields: Ŝ

 [ ]tt

u
u

t SSSd
S

S ˆln,ˆln
2
1ˆ

ˆ
1ˆln

0
−= ∫  for all 0 ≤ t ≤ T. 

Define for all 0 ≤ t ≤ T: 

 [ ] ∫=+=
t

u
u

ttt Sd
S

SSS
0

ˆ
ˆ
1ˆlnˆln,ˆln

2
1π  . 
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We now explain how πT , which is closely related to the payoff of a variance swap, can be 
replicated by continuous trading of the underlying and cash according to a self-financing 
strategy (V0, φ, ψ), where V0 is the initial value of the strategy, φt and ψt the quantities to be 
held in the underlying and cash at time t. The strategy is said to be self-financing because its 

mark-to-market value V ttttt BSV ψϕ ++= 0  verifies: 



 ttttt dBdSdV ψϕ +=  
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(In other words the change in value of the strategy between times t and t + dt is computed as 
a mark-to-market P&L: change in asset price multiplied by the quantity held at time t. There 
is no addition or withdrawal of wealth.) 

 

Self-financing strategy 

One can verify that the following choice for (V0, φ, ψ) is self-financing: 
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Let us point out a few important things: 

– The self-financing strategy only replicates the terminal payoff πT but it does not replicate 
πt for t < T. It is indeed easy to see that πT = VT: 
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However πt > Vt for t < T: 
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– For the self-financing strategy to be predictable (i.e. for φt, ψt to be entirely determined 
based solely on the information available before time t), the assumption that rates are 
deterministic is crucial. 

 

Pricing 

Having identified a self-financing strategy we can proceed to price a variance swap by taking 
the risk-neutral expectation of πT / BT: 

 0ˆ
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since  is assumed to be martingale under the risk-neutral measure. Whence: Ŝ
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At this point, it should be noted that this representation is valid only as long as we assume 
that the underlying stock price process is continuous and rates are deterministic. As soon as 



we deviate from this assumption, additional adjustments have to be made. For further details 
in this regard, see Sections 3.3 and 3.4. 
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Representation as a sum of puts and calls 

In the previous paragraphs we showed that the annualized realized variance can be replicated 
with a static position in a log contract on the discounted stock price. However in general it is 
not possible to trade log contracts. Thus we need to obtain an alternative representation for 
the price of the variance swap using standard put and call options. 

For this purpose, note that a twice differentiable payoff f(S) can be re-written as follows: 
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Here ST denotes the spot price of the underlying and FT denotes the forward price10. For 
details we refer to the Appendix in Carr-Madan (2002). Choosing f(y) = ln(y) and taking 
expectations yields: 
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where y now denotes forward moneyness, and Put(y) or Call(y) the price of a vanilla put or 
call expiring at time T. Whence: 
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The interpretation of this formula is as follows: In case the stock price process S is a diffusion  
process, the annualized realized variance can be replicated by an infinite sum of static 
positions in puts and calls. Clearly, perfect replication is not possible since options for all 
strikes are not available. A more accurate representation would thus be a discretized version 
of the above (see Section 2.3 for an example.) 

 

3.3. Impact of Dividends 
When a stock pays a dividend, arbitrage considerations show that its price should drop by the 
dividend amount.  This phenomenon results in a higher variance when the stock price is not 
adjusted for dividends, which is most often the case. 

From a modeling standpoint, there are three standard ways to approach dividends: continuous 
dividend yield, discrete dividend yield, and discrete dollar dividend. In the following 
paragraphs we only focus on the first two cases: 

– For continuous dividend yield, we consider the price process: 

 ttttttt dWSdtSqrdS σ+−= )(  

where r is a deterministic interest rate, q is a deterministic dividend yield, σ is either 
deterministic or stochastic. 
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10 Since we assume zero dividends in this section, we have FT = S0BT. 
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– For discrete dividend yield, we consider the price process: 

  









−+= ∑

≤tt
tjtttttt

j

j
SdddWSdtSrdS σ

where r is a deterministic interest rate, σ is either deterministic or stochastic, and d1, …, dM  
are M discrete continously compounded dividend yields11 paid at dates t1, …, tM. 

 

Continuous Monitoring 

A continuous dividend yield has no impact on variance when monitoring is continuous.  In 
this regard, observe that: 

 [ ] [ ]TTT SS
T

SS
T

W ˆln,ˆln1ln,ln1
,0 ==  

where F
SS =ˆ  is the spot price normalized by the forward price.  This is because the dividend 

yield q is assumed to be deterministic.  Hence, there is clearly no impact due to continuous 
dividends12.  The hedging strategy also remains the same. 

 Next, let us consider the impact of discrete dividends. In this case the stock price process S 
follows:  
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We now have: 
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Let us have a closer look at the hedging strategy in the context of discrete dividend yields.  

For this purpose, define the total return process ( )∑ ≤
=

tt jtt
j

dS exp

BGG /ˆ =

G  where dividends are 

reinvested in the stock.  The discounted total return process  being a martingale we 
can use a similar hedging strategy as in Section 3.2 where the stock price process S is now 
replaced by G. 

 

Discrete Monitoring 

Consider a set of sampling dates Tttt N =<<<= L10

1−

0 .  For simplicity of presentation, we 

assume that the time intervals −=∆ iii ttt  are all constant and equal to ∆ . Recall the 

discrete definition of annualized variance without mean: 

t
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 Contrary to the continuous monitoring case, a continuous dividend yield has an impact on 
variance when monitoring is discrete.  Consider the log return between ti-1 and ti: 
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where 
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iii ttt qqrrNz σσ . Squaring the above yields: 
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Because the expectation of z is nil and its variance E(z2) is one, we obtain: 
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The relative impact of discrete monitoring on variance is thus: 
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At this point, it should be noted that even in the case where interest rates and dividends are 
assumed to be zero, we obtain some drift contribution in case of discretization.  This is due to 
the σ2 term in the numerator.  Moreover, for 0→∆t , the above expression implies that 
there is no contribution due to interest rates and continuous dividend yields — as already 
pointed out in the continuous monitoring case. 
 

 We now specialize our considerations to the case of discrete dividends.  Assuming that a 
discrete dividend dj is paid between times ti-1 and ti and carrying out similar calculations as 
in the previous paragraph yields the following expression for the expectation of the log 
return: 
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As can be seen from this equation, the contribution of discrete dividends does not converge to 
zero for .  We also obtain that the relative contribution of the interest rate and the 
continuous dividend yield within a time interval ∆t amounts to: 

0→∆t
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(such as local volatility) volatility may depend on S and would thus be impacted by dividends. 



3.4. Impact of Jumps 

A
T

 
Y

O
U

 
N

E
E

D
 

T
O

 
K

N
O

W
 

A
B

O
U

T
 

V
A

R
I

A
N

C
E

 
S

W
A

P
S

 

The purpose of this section is to analyze the impact of jumps, i.e. we no longer assume that 
the stock price process S follows a diffusion process and instead consider a jump diffusion 
process. For ease of exposure, we ignore interest rates and dividends: 

 
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or: 
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where W, N and Y are independent. W is a standard Brownian motion, N is a Poisson process 
with intensity λ and (Yn) are independent, identically distributed log-normal variables: 
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Parameters k, λ, δ can be interpreted as follows: k is the average jump size, λ controls the 
frequency of jumps, and δ is the jump size uncertainty (standard deviation.) Furthermore, the 

drift term µt is chosen such that  is a martingale, i.e.: SS =ˆ kt λµ −= . We then have for the 

annualized realized variance: 
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And the expected variance under the risk-neutral measure becomes: 
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Appendix A — A Review of Historical and Implied Volatility 
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Historical Volatility 
The volatility of a financial asset (e.g. a stock) is the level of its price uncertainty, and is 
commonly measured by the standard deviation of its returns.  For historical daily returns r1, r2, 
…, rn, an estimate is given as: 

 ∑
=

−
−

=
n

t
tHistorical rr

n 1

2)(
1

252σ  

where ∑
=

=
n

t
trn

r
1

1
 is the mean return, and 252 is an annualization factor corresponding to the 

typical number of trading days in a year. 

Historical volatility is also called realized volatility in the context of option trading and 
variance swaps. 

Here it is assumed that the returns were independent and drawn according to the same 
random ‘law’ or distribution — in other words, stock prices are believed to follow a ‘random 
walk.’  In this case, the estimate is shown to be unbiased with vanishing error as the number 
of daily observations n increases. 

The daily returns are typically computed in logarithmic terms in the context of options to 
remain consistent with Black-Scholes: 

 
1

ln
−

=
t

t
t P

P
r  

where Pt is the price of the asset observed on day t, and ln(.) is the natural logarithm. 

 

Implied volatility 
Vanilla options on a stock are worth more when volatility is higher.  Contrary to a common 
belief, this is not because the option has ‘more chances of being in-the-money’, but because 
the stock has more chances of being higher in-the-money, as illustrated in Exhibit A1. 

In a Black-Scholes world, volatility is the only parameter which is left to the appreciation of 
the option trader.  All the other parameters: strike, maturity, interest rate, forward value, 
are determined by the contract specifications and the interest rate and futures markets. 

Thus, there is a one-to-one correspondence between an option’s price and the Black-Scholes 
volatility parameter.  Implied volatility is the value of the parameter for which the Black-
Scholes theoretical price matches the market price, as illustrated in Exhibit A2. 

Because of put-call parity, European calls and puts with identical characteristics (underlying, 
strike, maturity) must have the same implied volatility.  This makes the distinction between 
volatilities implied from call or put prices irrelevant.  In the case of American options, 
however, put-call parity does not always hold, and the distinction might be relevant. 
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For each strike and maturity there is a different implied volatility which can be interpreted as 
the market’s expectation of future volatility between today and the maturity date in the 
scenario implied by the strike.  For instance, out-of-the money puts are natural hedges 
against a market dislocation (such as caused by the 9/11 attacks on the World Trade Center) 
which entail a spike in volatility; the implied volatility of out-of-the money puts is thus higher 



than in-the-money puts.  This phenomenon is known as volatility skew, as though the market 
expectations of uncertainty were skewed towards the downside. 
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An example of a volatility surface is given in Exhibit A3. 

 

Exhibit A1 — Simulated payoffs of an at-the-money call when the final stock price is log-normally 
distributed and the volatility is either 20% or 40%. 
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Exhibit A2 — Black-Scholes and Volatility: a) volatility is an input, b) volatility is implied 

a) b) 
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Exhibit A3 — Volatility Surface of EuroStoxx 50 as of December 2004 
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Source: JPMorgan. 
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Appendix B — Relationship between Theta and Gamma 
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An intuitive approach 
Consider the reduced P&L equation (Eq. 2) from Section 2.1 

 Daily P&L = )()
2
1 2 tS ∆×Θ∆( +×Γ  (Eq. 2) 

In a fair game, the expected daily P&L is nil.  This leaves us with: 

 [ ]2)(
2
1 St ∆×Γ−=∆×Θ E  

where E[.] denotes mathematical expectation13.  Writing ( ) ( ) 222 SS S
S ×=∆ ∆  yields: 
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S
SSt E  (Eq. B1) 

The quantity (  is the squared daily return on the underlying stock; taking expectation 

gives the stock variance over one day: .  (Remember that implied volatility σ is given 
on an annual basis.)  Replacing the expected squared return by its expression and dividing 
both sides of Equation B1 by ∆  finally yields: 

)2S
S∆

t∆×2σ

t

 22

2
1 SσΓ−=Θ . 

By the books 
Consider the Black-Scholes-Merton partial differential equation: 
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2
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2
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+
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∂

= σ  (Eq. B2) 

where f(t, S) is the value of the derivative at time t when the stock price is S, and r is the 
short-term interest rate. 

Equation (B2) holds for all derivatives of the same underlying stock, and by linearity of 
differentiation any portoflio Π of such derivatives.  Identifying the Greek letter corresponding 
to each partial derivative, we can rewrite Equation B2 as: 

 22

2
1 SrSr σΓ+∆+Θ=Π  

In the case of a delta-hedged portfolio, we have ∆ = 0, whence: 

 22

2
1 Sr σΓ−Π=Θ  

Because the short-term rate is typically of the order of a few percentage points, the first term 
on the right-hand side is often negligible, and we have the approximate relationship: 
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2
1 SσΓ−≈Θ . 

                                                 
13 Here we actually deal with conditional expectation upon the ‘information’ available at a certain point in time. 



Appendix C — Peak Dollar Gamma 
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When the interest rate is zero, the dollar gamma of a vanilla option with strike K, maturity T 
and implied volatility σ is given in function of the underlying level S as: 

 
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In Exhibit C1 below we can see that the dollar gamma has a bell-shaped curve which peaks 
slightly after the 100 strike.  It can indeed be shown that the peak is reached when S is equal 
to: 

 2/* 2TTKeS σσ −=  

Exhibit C1 — Gamma and Dollar gamma of an at-the-money European vanilla 
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