
The Expected Value Equal One Case     Vance Harwood    19-Oct-2021  

Consider the case of n independent, and identical random (iid) variables X1, X2…Xn,  where the random 

variables Xi are lognormally distributed with parameters 𝑢𝑔 and 𝜎𝑔 that satisfy the equation 

 𝑢𝑔 = − 
𝜎𝑔
2

2
 .   

Where 

• 𝑢𝑔 = geometric mean, the average of ln (Xi)   

• 𝜎𝑔 = geometric standard deviation, the standard deviation of ln (Xi)  

What is the expected value E[X1X2..Xn] as n → Infinity? 

The Status Quo 

The status quo solution is based on the assertion that if  random variables X1 through Xn are 

independent and identically distributed, then the theorem below can be used .  It asserts for 

independent random variables  

 E[X1X2..Xn]   = E[Xi]n         Theorem 1        ( MIT Random Variables and Expectation Corollary 10.2 page 31) 

For a log normal distribution the expected value of E[Xi]  = 𝒆𝑢𝑔+ 
𝜎𝑔2

2 ,  substituting 

−
𝜎𝑔
2

2
  for 𝑢𝑔  we have    𝒆

− 
𝜎𝑔2

2
 + 
𝜎𝑔2

2       = 𝒆𝟎  = 1   

According to theorem 1,   E[X1X2..Xn]   = E[Xi]n   so   E[X1X2..Xn] = 1𝑛  and lim
𝑛→∞

(1)𝑛 = 1.  

 

Another Way 

However, instead of using theorem 1 we can compute E[X1X2..Xn] as n → Infinity directly.  

The random variable for a log normal distribution is Xi = 𝑒𝑢𝑔+ 𝜎𝑔𝑍𝑖 ,  

where  𝑍𝑖 = standard normal distribution Ɲ(0,1). 

Multiplying the random variables X1X2..Xn  we have X1X2..Xn   = (𝑒𝑢𝑔+ 𝜎𝑔𝑍1 )(𝑒𝑢𝑔+ 𝜎𝑔𝑍2 )… (𝑒𝑢𝑔+ 𝜎𝑔𝑍𝑛 ).   

We can rewrite this as  

𝑒𝑛𝑢𝑔𝑒  𝑛𝜎𝑔(𝑍1+𝑍2+⋯𝑍𝑛)  which we can rewrite as  

𝑒𝑛𝑢𝑔𝑒  𝑛
2𝜎𝑔

(𝑍1+𝑍2+⋯𝑍𝑛)

𝑛
    which equals   𝑒𝑛𝑢𝑔 (𝑒

 𝜎𝑔(
(𝑍1+𝑍2+⋯𝑍𝑛)

𝑛
) 
)
𝑛2

. 

For this case  
𝜎𝑔2

2
  must be positive therefore 𝑢𝑔 must be negative, so as n → ∞ the lim

𝑛→∞
𝑒𝑛𝑢𝑔 =  𝑒−∞ 

which equals zero.   

https://dspace.mit.edu/bitstream/handle/1721.1/70477/6-042j-fall-2002/contents/readings/ln1112.pdf


The (𝑒
 𝜎𝑔(

(𝑍1+𝑍2+⋯𝑍𝑛)

𝑛
) 
)
𝑛2

term includes the expression (
(𝑍1+𝑍2+⋯𝑍𝑛)

𝑛
) which by the law of large 

numbers (LLN)  
(𝑍1+𝑍2+⋯𝑍𝑛)

𝑛
 
𝑎.𝑠.
→   E[𝑍𝑖]  as n → ∞.  Since lim

𝑛→∞
(𝑒
 𝜎𝑔(

(𝑍1+𝑍2+⋯𝑍𝑛)

𝑛
) 
)
𝑛2

     =   

[ lim
𝑛→∞

𝑒
 𝜎𝑔(

(𝑍1+𝑍2+⋯𝑍𝑛)

𝑛
) 
]
𝑛2

 we can invoke the LLN to say =   [ lim
𝑛→∞

𝑒
 𝜎𝑔(

(𝑍1+𝑍2+⋯𝑍𝑛)

𝑛
) 
]
𝑛2

  = 

[ lim
𝑛→∞

𝑒  𝜎𝑔 E[𝑍𝑖] ]
𝑛2

.  In this case  E[𝑍𝑖] = 0, So we have  [ lim
𝑛→∞

𝑒0 ]
𝑛2

  =  (1)𝑛
2
 =  1. 

So the overall  𝑒𝑛𝑢𝑔 (𝑒
 𝜎𝑔(

(𝑍1+𝑍2+⋯𝑍𝑛)

𝑛
) 
)
𝑛2

expression, the product of the random variables reduces to 

(0)(1) = 0 as  n → ∞.  

So as n → Infinity a direct calculation gives us E[X1X2..Xn] =  E[0] = 0 for this case, which contradicts the 

solution based on theorem one.  

  



The Coin Flip Contradiction Case     Vance Harwood    19-Oct-2021  

Take a fair coin, label the sides 1.2499 for heads and 0.7999 for tails. The expected value of the coin 

toss, which we will designate as the random variable Xi, is the arithmetic average of the sides,   
(1.2499+0.7999)

2
, so E[Xi] = 1.0249.   The product of a head/tail pair, (1.2499)(0.7999) is approximately 

0.9998.  For a large number of tosses, what is the expected value of multiplying together the values of n 

coin tosses?  

The Status Quo 

Given that random variables X1 through Xn are independent and identically distributed, the standard 

solution to this problem is to use Theorem 1 below.  It asserts:  

 E[X1X2..Xn]   = E[Xi]n                                                                                                             Theorem 1         

Since in this case E[Xi] = 1.0249, then according to Theorem 1 the expected value of the multiplied 

random variable E[X1X2..Xn]  = (1.0249)𝑛.  Since the lim
𝑛→∞

(1.0249)𝑛 = ∞ then E[X1X2..Xn]  = ∞ also.  

The Contradiction 

However, consider the following calculation of E[X1X2…Xn]. There are three catagories to consider as n 

→ infinity: 

1. The number of tails is larger than the number of heads  

2. The number of heads equals the number of tails. 

3. The number of heads is larger than the number of tails 

The analysis for the first two categories can be combined and represents approximately half the 

outcomes of this exercise.  If the number of tails in the X1X2…Xn product is equal or greater than the 

number of heads then there are  
𝑛−(𝑇−𝐻)

2
 pairs of (1.2499)(0.7999) in the product.  Multiplying this term 

by (0.799)T−H  captures the contribution of any unpaired tails. The resulting equation is: 

X1X2…Xn = ((1.2499)(0.7999) )
𝑛−(𝑇−𝐻)

2 (0.7999)𝑇−𝐻 

In this scenario the absolute values of both of the base terms of the equation are positive numbers, less 

than one and the exponents are non-negative.  Therefore, the overall product will always be less than 

one.  In addition, as n → ∞ for y > 0 and y < 1 the lim
𝑛→∞

(𝑦)𝑛 = 0.   So, we can say in the limit:  

E[X1X2…Xn] = E[ lim
𝑛→∞

((0.7999)(1.2499
𝑛−(𝑇−𝐻)

2 (0.7999)𝑇−𝐻)   = E[0] = 0. 

Since this is the outcome of the coin flip exercise approximately half the time, this result falsifies the 

status quo position that E[X1X2..Xn] = (1.2499)n,  where lim
𝑛→∞

(1.0249)𝑛 → ∞.    

The analysis of case 3, when the number of heads is larger than the number of tails also contradicts the 

status quo is below.  

 



The Coin Flip Contradiction: More Heads Than Tails 

The mean or expected value of the number of heads for each toss is 0.5 heads.  If the coin toss is 

repeated n times, then as n → infinity the Law of Large Numbers says that the proportion of heads 

after n flips will almost surely converge to 
1

2
  as n → infinity.  While the absolute difference between the 

number of heads and tails can be large, the ratio of that difference divided by the total number of flips 

will go to zero as n → infinity,  lim
𝑛→∞

|𝐻−𝑇|

𝑛
= 0.   

In the case of more heads than tails we have 
𝑛−(𝐻−𝑇)

2
 pairs of (1.2499)(0.7999) multiplied by 

(1.2499)H−T  which gives us the following equation: 

E[X1X2…Xn] = 𝐸[((1.2499)(0.7999))
𝑛−(𝐻−𝑇)

2 (1.2499)𝐻−𝑇]  

Rearranging the terms we have  

((1.2499)(0.7999))
𝑛−(𝐻−𝑇)

2 (1.2499)𝐻−𝑇 =  ((1.2499)(0.7999))
𝑛

2((1.2499)(0.7999))
−(𝐻−𝑇)

2 (1.2499)𝐻−𝑇 . 

 Taking the terms to the 
𝑛

𝑛
 power and rearranging we have: 

(((1.2499)(0.7999))
1

2((1.2499)(0.7999))
− 
1

2
(
(𝐻−𝑇)

𝑛
)
(1.2499)

 (
(𝐻−𝑇)

𝑛
)
)

𝑛

.  

The  lim
𝑛→∞

(((1.2499)(0.7999))
1

2((1.2499)(0.7999))
− 
1

2
(
(𝐻−𝑇)

𝑛
)
(1.2499)

 (
(𝐻−𝑇)

𝑛
)
)

𝑛

        =   

[ lim
𝑛→∞

(((1.2499)(0.7999))
1

2((1.2499)(0.7999))
− 
1

2
(
(𝐻−𝑇)

𝑛
)
(1.2499)

 (
(𝐻−𝑇)

𝑛
)
)]

𝑛

.   

Since the limit of the absolute difference between the number of heads and tails divided by the total 

number of flips lim
𝑛→∞

|𝐻−𝑇|

𝑛
= 0, then as n → infinity the 

(𝐻−𝑇)

𝑛
 terms go to zero giving us  

lim
𝑛→∞

((1.2499)(0.7999))
− 
1

2
(
(𝐻−𝑇)

𝑛
)
 =1  and lim

𝑛→∞
(1.2499)

 (
(𝐻−𝑇)

𝑛
)
 = 1 so the overall limit as n → ∞ is 

lim
𝑛→∞

(((1.2499)(0.7999))
1

2(1)(1)) = ((1.2499)(0.7999))
1

2.  Since ((1.2499)(0.7999))
1

2 is less than one 

and greater than zero then lim
𝑛→∞

(((1.2499)(0.7999))
1

2)
𝑛

  =  0.  Therefore for the heads greater than tails 

case E[X1X2…Xn] = E[ lim
𝑛→∞

(((1.2499)(0.7999))
1

2((1.2499)(0.7999))
− 
1

2
(
(𝐻−𝑇)

𝑛
)
(1.2499)

 (
(𝐻−𝑇)

𝑛
)
)

𝑛

] = E[0] =0  

which also contradicts the status quo result of E[X1X2..Xn] = (1.2499)n,  where lim
𝑛→∞

(1.0249)𝑛 → ∞    

  



Two Means Straddling One  Case                               Vance Harwood    19-Oct-2021  

The Case 

Consider the case of n independent, and identical random (iid) variables X1, X2…Xn,  where the random 

variables Xi take on positive real number values of b or c with 0.5 probability.  The characteristics of the 

values b and c are: 

1. v is a positive, non-infinite real number 

2. d is a negative, non-infinite real number  

3. b =𝑒(𝑑+𝑣) and c = 𝑒(𝑑−𝑣) 

4. 𝑒𝑑   >  
2

(𝑒𝑣+ 𝑒−𝑣) 
 

Example parameters that meet these conditions are v = 0.2 and d = -0.01.  

The net effects of these restrictions are: 

1. That b multiplied by c = 𝑒(𝑑+𝑣+𝑑−𝑣) = 𝑒(2𝑑) 

2. The arithmetic mean of b and c will always be greater than one 

3. The geometric mean of b and c will always be less than one 

4. The random variable E[Xi] has a defined mean and variance 

 

The Status Quo 

The expected value of E[Xi] is the arithmetic mean of Xi, which is 

𝑒(𝑑+𝑣) + 𝑒(𝑑−𝑣)

2
   which can be rewritten as 𝑒𝑑 (

𝑒(𝑣) + 𝑒(−𝑣)

2
) 

The term on the left,  𝑒𝑑  was defined earlier as being more positive than   
2

(𝑒𝑣+ 𝑒−𝑣) 
.  The term  

2

(𝑒𝑣+ 𝑒−𝑣) 
  is the reciprocal of the right-hand term  

𝑒(𝑣) + 𝑒(−𝑣)

2
.   A number multiplied by its reciprocal 

equals one, but since 𝑒𝑑  is defined to be more positive than  
2

(𝑒𝑣+ 𝑒−𝑣) 
 the product of  𝑒𝑑and  

(
𝑒(𝑣) + 𝑒(−𝑣)

2
)  must be larger than one. Therefore, the expected value, E[Xi] must be greater than 1.  

Given that, theorem 1 states that in this case,  E[X1X2..Xn]   =   E[Xi]n   which goes to ∞  as   n →   ∞ 

 

The Contradiction  

E[X1X2...Xn] is equal to E[𝑒ln (X1X2...Xn]  we can further rewrite this as 

E[𝑒(𝑙𝑛 (𝑋1)+𝑙𝑛(𝑋2)+⋯𝑙𝑛 (𝑋𝑛)].  We multiply the exponent by 
𝑛

𝑛
 which we rewrite as  



E[𝑒𝑛( 
1

𝑛
(𝑙𝑛 (𝑋1)+𝑙𝑛(𝑋2)+⋯𝑙𝑛 (𝑋𝑛)))].                                                                   Equation (1)  

Notice that the term  
1

𝑛
(𝑙𝑛 (𝑋1) + 𝑙𝑛(𝑋2) +⋯ 𝑙𝑛 (𝑋𝑛))  is the sample average of all the ln(Xi) terms  

By the Law of Large Numbers we can say the sample average converges almost surely to the expected 

value E[ln(Xi)] as n →  ∞. 

The natural log of the two values b and c of Xi are ln(𝑒(𝑑+𝑣)) and ln(𝑒(𝑑−𝑣))) respectively, which reduces 

to d+v and d-v.   The expected value then of E[ln(Xi)] is calculated as (d+v)*0.5 plus (d-v)*0.5 = 

0.5(d+v+d-v) = 0.5(2d) = d.  

Returning to equation 1 we can now say that  

E[𝑒𝑛( 
1

𝑛
(ln (𝑋1)+ln (𝑋2)+⋯ln (𝑋𝑛)))] = E[(𝑒( 

1

𝑛
(ln(𝑋1)+ln(𝑋2)+⋯ ln(𝑋𝑛)))

𝑛

] Since 

lim
𝑛→∞
[(𝑒( 

1
𝑛(
ln(𝑋1)+ln(𝑋2)+⋯ln(𝑋𝑛)))

𝑛

     =   [ lim
𝑛→∞

(𝑒( 
1
𝑛(
ln(𝑋1)+ln(𝑋2)+⋯ln(𝑋𝑛)))]

𝑛

 then by LLN 

[ lim
𝑛→∞

(𝑒( 
1
𝑛(
ln(𝑋1)+ln(𝑋2)+⋯ln(𝑋𝑛)))]

𝑛

   
𝑎.𝑠.
→     [𝑒E[ln(Xi)]]

𝑛
.   Since E[ln(X𝑖)] = 𝑑 we have  

[𝑒E[ln(X𝑖)]]
𝑛
=  [𝑒d]

𝑛
 and since d is always negative then 𝑒𝑑 < 1 and the lim

𝑛→∞
(𝑒d)

𝑛
 = 0 

Therefore in this case E[X1X2...Xn] = E[0] = 0  which contradicts theorem 1’s assertion that   E[X1X2..Xn] 

will go to infinity as n → ∞   

 

 


